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Summary 
The weight function method was used to derive stress 

intensity factors and crack mouth displacement coefficients for 
small edge cracks in fracture specimen geometries. Of greatest 
interest were cracks whose lengths were less than 20 percent 
of the specimen width. The effects of contact stresses due to 
point application of loads in bend testing were examined. The 
results are compared with available solutions and equations 
from the literature and with unpublished boundary collocation 
results. 

Introduction 
The purpose of this effort was to support a research study 

on the fatigue and fracture behavior of small cracks. Wide- 
range solutions for stress intensity and crack mouth displace- 
ment in edge-crack configurations are available. A “wide- 
range” solution is one that is considered valid for all possible 
values of the ratio of crack length to specimen width, that is, 
from zero to unity. These are typically produced by fitting 
curves from analytic solutions for cracks in semi-infinite bodies 
through numerical results for cracks in finite bodies. The 
accuracy depends upon the numerical results used. However, 
few numerical results for small cracks are published, and those 
are not supported by results from alternative methods. 

Bend specimens have practical advantages in experimental 
studies of small cracks. First, a fatigue crack may be initiated 
from a notch at a fairly high load. Next, the cyclic load is 
reduced, similar to that in a fatigue-crack threshold test, to 
produce a truly sharp crack. Then, by machining only one edge 
of the specimen, most evidence of the prior load history may 
be removed. Although this appears to be a simple way of 
producing a small, sharp crack, Timoshenko (ref. 1) has noted 
the presence of additional stresses due to contact forces in bend 
testing. It is essential to determine just what influence these 
stresses have on the stress intensity factor and the crack mouth 
displacement for small cracks. 

In this report, Seewald’s analysis (ref. 2) of the effect of 
contact stress was applied to the bend specimen configurations 
of interest. The stress correction terms were evaluated for 
three-point and four-point bending. The weight function 
methods of Bueckner (ref. 3) and Rice (ref. 4) were then used 
to determine the stress intensity and crack mouth displacement 
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coefficients from the corrected stresses. Finally, results were 
compared with available numerical solutions and wide-range 
interpolation equations. 

Symbols 
polynomial coefficient 
crack length 
beam thickness 
modulus of elasticity for plane stress 
effective modulus 
half-width of beam 
opening-mode stress intensity factor 
bending moment (fig. 2) 
weight function 
coefficients (eq. (4)) 

applied load (figs. 1 and 2) 
crack face pressure 
multiplicative term 
coordinate measured from crack tip toward cracked 

specimen width 
crack mouth displacement 
dummy variable 
Poisson’s ratio 
applied load (figs. 1 and 2) 
stress normal to load line 
nominal stress normal to load line 
stress correction term 

surface 

Method of Analysis 
Contact Stresses in Beams 

Timoshenko (ref. 1) notes that when a beam is loaded by 
a concentrated force the stresses are not exactly as given by 
elementary beam theory. Specifically, the stresses at and 
normal to the load line are smaller near the surface opposite 
the load. He presents curves and a few numerical values from 
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a, = a,$ + a; Seewald (ref. 2) to illustrate this trend. These suggest that 
contact stresses might affect the stress intensity factor and the 
crack mouth displacement for small cracks. 

Seewald (ref. 2) writes the stress normal to the load line 
as the sum of two terms, 

where a,,o is calculated by elementary beam theory and ui is 
the stress correction term. His notation and conventions are 
shown in figure 1. The stress correction term a; is given by 

m 
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where B is the beam thickness and z may be regarded as a 
dummy variable. The integral was evaluated in piecewise 
fashion as follows. 

For 0 I z I 0.1, the hyperbolic functions were replaced 
by the first two terms of their series expansions; that is, 

z2 z4 c o s h z = l + - + - + + . .  z3 z5 s i n h z = z + - + - +  ... 
3! 5 !  2! 4! 

(These approximations are accurate to at least five significant 
figures.) The resulting equation could then be integrated 
analytically, term by term. 

For 0.1 I z 5 5 ,  the hyperbolic functions were replaced 
by their exponential equivalents 

Figure 1.-Notation and conventions of Seewald (ref. 2). 

' 8z2 
cos 6) zdz 

and the integral was evaluated numerically according to 
Simpson's rule. 

Finally, for z 2 5 ,  the large-argument approximation 

sinh z = cosh z = - ez 
2 

was invoked (the error is less than 0.5 percent for z 1 5) .  The 
result could again be integrated analytically, term by term. 
The piecewise integrals were summed to give the total integral. 

Figure 2 shows the configurations of the specimens 
analyzed. For the three-point-bend specimen, the integral was 
evaluated in the crack plane (i.e., at x = 0). For the four-point- 
bend specimen, there are two forces located at a distance 
x = *2W = *4h  from the crack plane. By symmetry, the 
effect of each load is identical at the crack plane. By 
superposition, the effects may be added. Thus, the stress 
correction term is twice the value of the integral evaluated at 
xlh = 4 .  The discrete calculations are given in table I and 
plotted in figure 3. Note that the dimensionless stress from 
elementary beam theory is *6 at the surfaces (ylh = i 1). 
The stress correction term for three-point bending appears 
significant, but that for four-point bending is quite small and 
is later shown to be insignificant. The reaction forces at the 
ends of the specimens (which were at least as far from the 
crack plane as the four-point-bend loading forces) were 
disregarded. 

To use these discrete values in the weight function analysis 
to follow, simple equations were fit to them. A bicubic spline 
was used for three-point bending while a simple parabola was 
sufficient for four-point bending. The equations for the 
dimensionless stress correction terms in the crack plane (x = 0) 
are 
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(a) Uniform tension. 
(b) Pure bending. 

(c) Three-point bending. 
(d) Four-point bending. 

Figure 2.-Configurations analyzed. 
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TABLE 1.-CONTACT STRESS CORRECTION TERM, u;BW/P 
IN THE PLANE x = 0 

[See fig. 1 for notation.] 

Distance, 
Y/h 

1 .00 
.95 
.90 
.85 
.80 
.70 
.60 
.50 
.40 
.30 
.20 
.10 

0 
-.IO 
- .20 
- .30 
- .40 
-.50 
- .60 
-.70 
-.80 
-.85 
- .90 
- .93 
- .95 
- .97 
-.98 
- .99 

-1.00 

Three-point bending 

Calculated 

1.2400 
1.2214 
1.1974 
1.1684 
1.1348 
1.0632 
,9620 
,8572 
,7426 
.6234 
,4992 
,3736 
,2486 
.1272 
.0118 

- .W48 
-.1892 
- ,2680 
- .3272 
-.3544 
- ,3678 
- .3574- 
- .3730 
-.3196 
- ,3056 
- .2896 
-.2810 
-.2716 
-.2618 

Fitted 
spline 

1.2414 
1.2220 
1.1974 
1.1684 
1.1350 
1.0560 
,9632 
,8588 
,7454 
,6250 
.5002 
,3732 
,2466 
,1228 
,0056 

-.lo18 
- .1956 
- .2722 
- ,3276 
-.3586 
-.3612 
- ,3508 
-.3318 
-.3164 
- .3M2 
- .2904 
- .2830 
- .2752 
- ,2670 

Seewald 
(ref. 2) 

Four-point bending 

Calculated 

- 0.03696 
- .03508 
- ,03310 
- ,03108 
- ,02908 
- ,02514 
-.02134 
-.01760 
-.01394 
-.01028 
- .00664 
- .OO298 
.oO066 
,00430 
m794 
,01154 
.01510 
,01860 
.02204 
.02544 
,02878 
,03044 
.03210 
,03308 
.03376 
.03442 
,03476 
,03510 
,03544 

Fitted 
parabola 

-0.03572 
- ,03478 
- ,03284 
- .03090 
- ,02898 
-.02516 
-.02136 
- ,01760 
-.01386 
- ,01016 
- ,00648 
- ,00284 

.OOO78 
,00436 
.00792 
.01144 
,01494 
,01840 
,02184 
.02524 
,02862 
,03030 
.03196 
,03296 
.03362 
,03428 
,03462 
,03494 
,03528 

BW 
P 

u;- = 0.00078 - 0.036 

for four-point bending. All fitted equations are within 0.5 
percent of the range of a;. 

Weight Function Analysis 

pressure distribution over the face of a crack as 
Bueckner (ref. 3) gives the stress intensity for a general 

(3) 

where M( t) is the weight function, a is the crack length, p ( f )  
is the crack face pressure, and t is the coordinate measured 
from the crack tip toward the cracked surface. For the case 
of an edge crack in a strip of unit width, Bueckner approxi- 
mates the weight function as 
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Figure 3.--Stress correction terms for concentrated loading at x = 0. 

where 

ml = 0.6147 + 17.1844 - + 8.7822 - (;I (;y 
and 

m2=0.2502+3.2889 - +70.0444 - (q ($ 
l and claims an accuracy of 1 percent for a/W 5 0.5. 

Rice (ref. 4) extends the weight function method to enable 
the calculation of crack mouth displacements from the weight 
function and the stress intensity factor. According to his work, 
the crack mouth displacement is 

I where E' is the effective modulus (modulus of elasticity E 
for plane stress or El(1 - v2) for plane strain with v being 
Poisson's ratio). 

To compute the stress intensity factor, I added the stress 
from elementary beam theory (evaluated at the crack plane) 
to the Seewald stress correction term (eq. (1)) and substituted 
for p ( t )  in equation (3). Then I computed the crack mouth 
displacement by substituting the stress intensity factor and the 
weight function into equation (5). Since both the stress 
distribution and Bueckner 's expression for the weight function 
are power series, I integrated equations (3) and (4) directly, 
term by term. The resulting equations, however, were quite 
tedious. 

The stress distributions involved terms up to the third power 
in a / W  (depending on the type of loading). The weight function 
had terms up to the sixth power. When these were multiplied, 
the final polynomial for the stress intensity factor had terms 
to the ninth power in alW. Multiplying the stress intensity 
factor by the weight function to calculate the crack mouth 
displacement gave terms to the 15th power. Because such 
polynomials are too long for practical use, I reduced them in 
degree by using Chebyshev economization (ref. 5). To do this, 
I wrote a program on a NASA mainframe computer by using 
internally developed subroutines. The exact and economized 
polynomials agreed within less than 0.33 percent over the 
range 0 I a/W I 0.5 .  Table I1 lists the coefficients of the 
polynomials, which are expressed in the general form 

Here P is the parameter to be calculated, Q is a multiplicative 
term, and A, is the polynomial coefficient. 

Results and Discussion 
The cases of uniform tension and pure bending were 

examined first. This was done to verify the application of the 
weight function method. Also, unpublished boundary 
collocation results for small cracks obtained by Bernard Gross 
of NASA Lewis were evaluated. The termp(t) in equation (3) 
was given a constant value for uniform tension or a linearly 
varying value for pure bending. Table 111 lists the values of 
the stress intensity factor and crack mouth displacement 
coefficients. Values of wide-range polynomials from the 
literature and discrete values from numerical analyses are also 
listed. 

Figure 4 shows the case of uniform tension. Over the range 
0 5 a / W  5 0.5, the weight function stress intensity and 
displacement coefficients are within 1 . 1  and 2.4 percent, 
respectively, of those from the wide-range equations by Tada 
(ref. 6) and Koiter (ref. 7). Larger differences in the 
displacement coefficients were expected, since they depend 
on the square of the weight function. Numerical results by Keer 
(ref. 8), using an integral equation method, are within 1 percent 
for alW values as low as 0.05. Published (ref. 9) and 



Polynomial 
coefficient 

Uniform tension Pure bending Four-point bending Three-point bending 

Parameter to be calculated, P 

KLiWIP 6 KL3W216M \r, KBWI12P 6 KEWI6P 6 

4% I */6r a 1 6 r  

Uniform tension Pure bending Four-point bending Three-point bending 

E 'E WvlPa E'EWvl6Pa E' BW2v/6Ma E'EWvll2Pa 

Economized 

28.200 
-20.081 
191.30 

-292.09 
495.69 

_____-_ 
_-_---_ 
____--- 
-_--_-_ 
------_ 
__----_ 
------_ 
- - - - - - _ 
- - - - - - - 
____--- 
_____-- 

Exact 

26.834 
-19.459 
149.43 

-140.66 
345.65 

-250.54 
277.69 

- 26 1.52 
1171.6 

-864.67 
228.10 
-82.358 
1177.5 

-7%.80 
201.86 
-68.017 

Economized Exact 

TABLE II.-EXACT AND ECONOMIZED POLYNOMIALS FOR STRESS INTENSITY FACTOR 
AND CRACK MOUTH DISPLACEMENT 

L [Coefficients of polynomials in form P = Q [A,(a/W)"]]. 

(a) Coefficients for stress intensity factor 

Exact I Economized I Exact Exact I Economized Exact 

2.5099 
0 

0 
0 
0 

12.772 

33.873 
___--- 
______ 

2.5127 
- .27290 
16.865 

34.931 
-20.376 

15.059 

76.631 
-18.310 

- 59.50 1 
0 
0 

203.24 
-124.16 

15.104 
- 18.360 

76.853 
-59.664 
- .008568 
0 

203.83 
- 124.51 

-.014688 
----__-__-- 

14.389 

82.423 

21.854 

-20.868 

-72.610 

-8.9518 
194.19 

- 141.52 
38.412 

-13.806 

@) Coefficients for crack mouth displacement 

Polynomial 
coefficient 

2 / r  

Exact I Economized Exact Economize4 

28.084 
- 17.073 
150.41 

- 12 1.46 
313.78 

223.73 

1133.5 
723.23 

0 
0 
1.2323 

-203.03 

-209.35 

-6.9910 
____---- 
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TABLE III. -DIMENSIONLESS STRESS INTENSITY FACTOR AND CRACK MOUTH DISPLACEMENT COEFFICIENTS 

(a) Stress intensity factor coefficients 

Four-point 
bending, by 

weight function, 
KBWIl2P 

Relative 
crack 

length, 
a1 w 
- 
0 

,025 
,050 
,075 
.loo 
,125 
,150 
,175 
,200 
,225 
,250 
,275 
,300 
.325 
,350 
,375 
,400 
,425 
.450 
,475 
.500 - 

Weight 
function 

Uniform tension, 
KBWIP \r;;; 

Pure bending, 
KBWZ16M & 

Three-point bending, 
KBWI6P 6 

- 
Gross 

(ref. 12: 

- 
Koiter 
(ref. 7) 

- 
ASTM 

(ref. 11) 
Weight 
function 

1.1311 
1.1327 
1.1429 
1.1613 
1.1872 
1.2203 
1.2605 
1.3077 
1.3620 
1.4237 
1.4930 
1.5707 
1.6573 
1.7537 
1.8608 
1.9799 
2.1122 
2.2591 
2.4222 
2.6032 
2.8039 

- 

- 

Tada 
(ref. 6) 

Gross 
(ref. 9 

Keer 
(ref. 8: 

Weight 
function 

Tada 
(ref. 6) 

Koiter 
(ref. 7) 

1.1215 
1.0916 
1.0691 
1.0528 
1.0419 
1.0358 
1.0341 
1.0365 
1.0429 
1.0531 
1.0671 
1.0850 
1.1070 
1.1333 
1.1643 
1.2002 
1.2417 
1.2895 
1.3442 
1.4069 
1.4789 

- 
Gross 

(ref. 9) 
Tada 

(ref. 6) 
Nisitani 
(ref. 10) 

1.1220 
1.1218 
1.1473 
1.1686 
1.1957 
1.2289 
1.2682 
1.3140 
1.3667 
1.4265 
1.4941 
1.5700 
1.6551 
1.7502 
1.8565 
1.9752 
2.1080 
2.2568 
2.4241 
2.6128 
2.8266 

1.1218 
1.1272 
1.1418 
1.1643 
1.1938 
1.2298 
1.2722 
1.3209 
1.3761 
1.4381 
1.5074 
1.5845 
1.6703 
1.7656 
1.8716 
1.9897 
2.1214 
2.2689 
2.4345 
2.6213 
2.8328 - 

1.1304 
1.0987 
I .0744 
1.0569 
1.0455 
1.03% 
1.0388 
1.0426 
1.0507 
1.0630 
1.0792 
1.0992 
1.1232 
1.1512 
1.1835 
1.2202 
1.2618 
1.3087 
1.3615 
1.4208 
1.4872 

1.1220 
1.0937 
1.0709 
1.0534 
1.0408 
1.0329 
1 .0295 
1.0304 
1.0355 
1.0448 
1.0582 
1.0758 
1.0978 
1.1243 
1.1557 
1.1922 
1.2345 
1.2830 
1.3386 
1.4023 
1.4752 

1.1338 
1.1019 
1.0776 
I .o600 
1.0486 
1.0427 
1.0419 
1.0457 
1.0539 
1.0661 
1.0824 
1.1025 
1.1266 
1.1547 
1.1871 
1.2239 
1.2657 
1.3127 
1.3657 
1.4252 
1.4918 

1 .o900 
1.0515 
1.0221 
1.0005 
,9858 
,9771 
,9738 
.9752 
,9809 
.9906 

1.0041 
1.0214 
1.0427 
1.0680 
1.0979 
1.1329 
1.1735 
1.2206 
1.2751 
1.3380 
1.4106 - 

1.0758 
1.0431 
1.0169 
3970 
,9829 
.9741 
,9704 
,9715 
,9769 
,9866 

1.0003 
1.0180 
1.0396 
1.0653 
1.0953 
1.1300 
1.1698 
1.2155 
1.2680 
1.3282 
1.3974 - 

1.1227 
1.0827 
1.0507 
1.0258 
1.0074 
,9948 
,9876 
,9854 
,9881 
,9954 

1.0073 
1.0237 
1.0447 
1.0704 
1.1010 
1.1370 
1.1786 
1.2265 
1.2815 
1.3443 
1.4162 - 

1.0801 
1.0439 
1.0156 
,9943 
,9795 
.9705 
,9669 
,9681 
,9739 
,9840 
.9982 

1.0166 
1.0390 
1.0656 
1.0967 
1.1324 
1.1731 
1.2193 
1.2715 
1.3304 

a. 166 
1.158 
1.190 

1.268 

1.370 

1.500 

_____  
_____  
_____  

'1.111 
Y.062 
1.047 

'1.060 
'1.003 
"984 

a.974 

,981 

1.662 

1.862 

2.110 

2.420 

_____  
_____  
_____ 

I .  I23 

1.184 

1.256 

1.350 

_____ 
_____ 
_____ 1.175 

2.810 - 2.826 1.497 - 1.3967 

@) Crack mouth displacement coefficients 

Pelativt 
crack 

length, 
a1 w 

Uniform tension, 
E'BWvlPa 

Pure bending, 
E'BW'v16Ma 

Three-point bending, 
E'BWvl6Po 

Four-point 
bending, by 

weight function, 
E'BWvl12Pa 

(ref. 13) 

- 
KapP 

(ref. 13 

2.9098 
2.8484 
2.8056 
2.7812 
2.7753 
2.7880 
2.8194 
2.8700 
2.9402 
3.0308 
3.1428 
3.2773 
3.4361 
3.6212 
3.8351 
4.0811 
4.3634 
4.6871 
5.0587 
5.4865 
5.9810 

- 

- 
Weight 
functior 

2.9893 
2.9844 
3.0102 
3.0630 
3.1404 
3.2410 
3.3643 
3.5112 
3.6835 
3.8842 
4.1173 
4.3880 
4.7026 
5.0683 
5.4936 
5.9881 
6.5624 
7.2283 
7.9984 
8.8868 
9.9086 

- 

- 
la. 

- 
Tada 

(ref. 6) 

2.9200 
2.9298 
2.9593 
3.0090 
3.07% 
3.1722 
3.2882 
3.4295 
3.5984 
3.7977 
4.0310 
4.3024 
4.6171 
4.9815 
5.4030 
5.8911 
6.4572 
7.1157 
7.8843 
8.7852 
9.8468 

- 

- 

Gross 
(ref. 9) 
- 

Keer 
(ref. 8) 
- _____ 
_____ 
2.%7 

3.107 
_____  

Weight 
function 

2.9833 
2.9424 
2.9241 
2.9264 
2.9476 
2.9864 
3.0422 
3. I148 
3.2046 
3.3122 
3.4390 
3.5868 
3.7578 
3.9547 
4.1808 
4.4400 
4.7363 
5.0745 
5.4598 
5.8980 
6.3952 

- 

Tada 
(ref. 6) 

Gross 
(ref. 9) 

Weight 
function 

Tada 
(ref. 6) 

Gross 
(ref. 12) 

0 
,025 
,050 
,075 
,100 
,125 
,150 
.I75 
,200 
,225 
,250 
,275 
,300 
.325 
,350 
,375 
,400 
,425 
,450 
,475 
,500 - 

2.9200 
2.9066 
2.9046 
2.9147 
2.9376 
2.9741 
3.0250 
3.0914 
3.1745 
3.2757 
3.3%7 
3.5393 
3.7059 
3.8991 
4.1223 
4.3792 
4.6747 
5.0144 
5.4056 
5.8571 
6.3800 

_____ 
_____  
1 .840  
'2,707 
2.747 

2.9125 
2.9046 
2.9052 
2.9156 
2.9370 
2.9708 
3.0185 
3.0816 
3.1619 
3.2612 
3.3816 
3.5254 
3.6952 
3.8939 
4.1249 
4.3921 
4.7003 
5.0549 
5.4626 
5.9317 
6.4724 

2.9921 
2.9510 
2.9327 
2.9350 
2.9563 
2.9952 
3.0512 
3.1241 
3.2141 
3.3220 
3.4492 
3.5974 
3.7689 
3.%65 
4.1933 
4.4532 
4.7504 
5.0897 
5.4762 
5.9157 
6.4144 

2.8505 
2.8034 
2.7785 
2.7736 
2.7870 
2.8174 
2.8641 
2.9270 
3.0064 
3.1029 
3.2179 
3.3532 
3.5109 
3.6940 
3.9056 
4.1495 
4.4299 
4.7517 
5.1200 
5.5405 
6.0195 

2.8400 
2.7993 
2.7734 
2.7625 
2.7669 
2.7871 
2.8234 
2.8766 
2.9475 
3.0371 
3.1467 
3.2778 
3.4323 
3.6126 
3.8215 
4.0625 
4.3399 
4.6593 
5.0272 
5.4522 
5.9450 

_-___ 
'2.820 
'2.733 
2.935 

'3.100 

3.625 

_____  
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unpublished boundary collocation stress intensity factors by 
Gross are within 2.2 percent at a/W = 0.05 and within less 
than 1 percent for a/W 2 0.075. His displacement coefficients, 
however, differ by as much as 8.4 percent. 

Gross' convergence criterion was based only on the first 
term of the Williams stress function, which is proportional 
to the stress intensity factor. Crack displacements, however, 
are influenced by higher terms as well. Perhaps his displace- 
ments would be more accurate if higher-order terms had been 
included in the convergence criterion. 

Figure 5 shows similar results for pure bending. Stress 

intensity factor and crack mouth displacement coefficients 
derived from the weight function approach are within 2.5 
percent of the values from the reference equations. Gross' 
stress intensity factors are within 4 percent at a/ W = 0.05 and 
within 2.6 percent for a/W 2 0.5. Crack mouth displacements 
show about the same trend as for uniform tension. 

The case of four-point bending was analyzed next. The stress 
correction term of equation (2c) was added to the linear 
distribution of pure bending. The total stress was substituted 
for p ( t )  in equation (3), and the stress intensity factor and 
crack mouth displacement coefficients were determined as 
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I 



before. They are listed in table I11 but are not plotted. As we 
might suspect from figure 3, contact stresses in the four-point- 
bend configuration analyzed had little effect. The stress 
intensity factor and crack mouth displacement coefficients 
differed from the case of pure bending by less than 0.33 
percent. The reaction loads, which were twice as far from the 
crack plane as the applied loads, had minimal significance and 
their effect was disregarded. 

The case of three-point bending, however, was more 
interesting. The stress correction term of equation (2a) was 
added to the simple bending distribution, and the process was 
repeated. The results are listed in table I11 and illustrated in 
figure 6. There was no analysis for comparison until a paper 
by Nisitani and Mori (ref. IO) was translated. They used the 
body force doublet method. Table I11 also includes their stress 
intensity results (they did not publish crack mouth displace- 
ments). The weight function results agree with theirs within 
0.5 percent. Tada’s equation (ref. 6) also gives results within 
1 percent of the weight function results. Tada’s results are also 
listed in table I11 and plotted in figure 6. We should note that 
the 1985 edition of Tada’s handbook (ref. 6) repeats the ASTM 
expression. It would appear, then, that Tada’s earlier version 
might be more accurate. In the limit a/ W = 0, the results based 
on the ASTM expression (ref. 11) for stress intensity are nearly 
4 percent higher than the weight function results. Gross’ 
collocation results (ref. 12) appear accurate for alW 2 0.075. 
For crack mouth displacement, the weight function results and 
those of Tada (ref. 6) and Kapp (ref. 13) are within 2.5 percent. 
Gross’ collocation results (ref. 8) agree for a/W 1 0.2. 

Conclusions 
The most important conclusion from this study is that contact 

stresses influence the stress intensity factor and crack mouth 
displacement coefficients for small edge cracks in three-point 
bending. The effect is small but may be significant in small- 
crack fracture and fatigue-crack propagation studies. 

A second conclusion is that collocation values of the stress 
intensity factor are accurate for a/ W 1 0.1 and values of crack 
mouth displacement are accurate for alW 1 0.2. A different 
convergence criterion may be necessary if the collocation 

method is to be successful for small cracks. It is also evident 
that the weight function method is useful and effective for crack 
analysis. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, September 25, 1987 
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